This work reports the synthesis method and various properties of four rod-like antiferroelectric (R) laterally substituted enantiomers, with or without fluorine atoms used as substituents in the benzene ring. The influence of fluorine substitution on the mesophase temperature range was determined. The synthesized compounds are three-ring rod-like smectics with a chiral center based on (R)-(−)-2-octanol. Their chemical and optical purity was checked using high-performance liquid chromatography (HPLC). Two newly synthesized enantiomers and three previously reported (R) enantiomers were used to formulate two antiferroelectric mixtures. The mesomorphic behavior was characterized by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction (XRD). The helical pitch and tilt angle measurements were done using the selective light reflection phenomenon and the electro-optical method, respectively. All the enantiomers exhibit a wide temperature range of the antiferroelectric phase, with a high tilt angle. Furthermore, the enantiomer with lateral fluorine substitution in the ortho position has a very long helical pitch (more than 2.0 µm), relatively low enthalpy of melting point, and a tilt angle close to 45 degrees. The designed (R) enantiomers can be useful for formulating eutectic mixtures for further use in various devices, including photonics and optoelectronics.