Metal clusters were considered as excellent catalysts for methanol dissociation. In this work, two main decomposition mechanisms of methanol on Pt7, Pt3Cu4, and Cu7 clusters were investigated by the density functional theory. One was methanol direct dehydrogenation, and the other was non‐CO‐involved oxidation. Stable adsorption configurations, elementary reaction barriers, the potential energy surface (PES), and the charge analysis were elucidated. The results showed that on Pt7 cluster, methanol was favorable for direct decomposition. On Pt3Cu4 and Cu7 clusters, methanol was inclined to the pathway of non‐CO‐involved oxidation. All the transition‐state energies and the final‐state energies were related in a linear, including those for the clusters. The results may be useful for computational design and catalysts optimization.