This study aims to establish the influence of primary emission sources and atmospheric transformation process contributing to the concentrations of quinones associated to particulate matter of less than 2.5 ”m (PM 2.5 ) in three sites within the Metropolitan Area of Guadalajara (MAG), namely Centro (CEN), Tlaquepaque (TLA) and Las Ăguilas (AGU). Environmental levels of quinones extracted from PM 2.5 filters were analyzed using Gas Chromatography coupled to Mass Spectrometry (GC-MS). Overall, primary emissions in combination with photochemical and oxidation reactions contribute to the presence of quinones in the urban atmosphere of MAG. It was found that quinones in PM 2.5 result from the contributions from direct emission sources by incomplete combustion of fossil fuels such as diesel and gasoline that relate mainly to vehicular activity intensity in the three sampling sites selected. However, this also suggests that the occurrence of quinones in MAG can be related to photochemical transformation of the parent Polycyclic Aromatic Hydrocarbons (PAHs), to chemical reactions with oxygenated species, or a combination of both routes. The higher concentration of 1,4-Chrysenequinone during the rainy season compared to the warm-dry season indicates chemical oxidation of chrysene, since the humidity could favor singlet oxygen collision with parent PAH present in the particle phase. On the contrary, 9,10-Anthraquinone/Anthracene and 1,4-Naftoquinone/Naphthalene ratios were higher during the warm-dry season compared to the rainy season, which might indicate a prevalence of the photochemical formation during the warm-dry season favored by the large solar radiation typical of the season. In addition, the estimated percentage of photochemical formation of 9,10-Phenanthrenequinone showed that the occurrence of this compound in Tlaquepaque (TLA) and Las Ăguilas (AGU) sites is mainly propagated by conditions of high solar radiation such as in the warm-dry season and during long periods of advection of air masses from emission to the reception areas. This was shown by the direct association between the number hourly back trajectories arriving in the TLA and AGU from Centro and other areas in MAG and the highest photochemical formation percentage.