The effects of lead exposure on mammals are reported to be devastating. Lead is present in all the abiotic environmental components such as brass, dust, plumbing fixtures, soil, water, and lead mixed imported products. Its continuous use for several industrial and domestic purposes has caused a rise in its levels, thereby posing serious threats to human health. The mechanisms involved in lead-induced toxicity primarily include free-radical-mediated generation of oxidative stress which directly imbalances the prooxidants and the antioxidants in body. The toxicity of lead involves damage primarily to major biomolecules (lipid, protein, and nucleic acids) and liver (hepatotoxicity), nervous system (neurotoxicity), kidney (nephrotoxicity) and DNA (genotoxicity), present in animals and humans. The activation of c-Jun NH2-terminal kinase, phosphoinositide 3-kinase, or Akt and p38 mitogen activated protein kinase signaling pathways are important for lead cytotoxicity. Lead increased apoptosis through signaling cascade and associated factors and significantly impairs cell differentiation and maturation. In addition, lead has great impact on metabolic pathways such as heme synthesis, thereby leading to the onset of anemia in lead exposed people. This review encompasses an updated account of varied aspects of lead-induced oxidative stress and the biomolecular consequences such as perturbations in physiological processes, apoptosis, carcinogenesis, hormonal imbalance, loss of vision, and reduced fertility and their possible remediation through synthetic (chelators) and natural compounds (plant-based principles). This paper is primarily concerned with the biomedical implications of lead-induced generation of free radical and the toxicity management in the mammalian system.