Summary Trabecular bone score (TBS) assesses bone quality in the lumbar spine using dual-energy X-ray absorptiometry (DXA) scans. In postmenopausal women with osteoporosis, denosumab significantly improved TBS independently of bone mineral density (BMD). This practical technique may have a role in managing patients with osteoporosis. Introduction TBS, a gray-level texture index determined from lumbar spine DXA scans, correlates with bone microarchitecture and enhances assessment of vertebral fracture risk independently of BMD. In the FREEDOM study, denosumab increased BMD and reduced new vertebral fractures in postmenopausal women with osteoporosis. This retrospective analysis explored the effect of denosumab on TBS and the association between TBS and BMD in FREEDOM. Methods Postmenopausal women with lumbar spine or total hip BMD T-score <−2.5 and −4.0 or higher at both sites received placebo or denosumab 60 mg subcutaneously every 6 months. TBS indices were determined from DXA scans at baseline and months 12, 24, and 36 in a subset of 285 women (128 placebo, 157 denosumab) who had TBS values at baseline and ≥1 postbaseline visit. Results Baseline characteristics were comparable between treatment groups; mean (SD) lumbar spine BMD T-score was −2.79 (0.64), and mean (standard deviation [SD]) TBS was 1.200 (0.101) overall. In the placebo group, BMD and TBS increased by ≤0.2% or decreased from baseline at each visit. In the denosumab group, progressive increases from baseline at 12, 24, and 36 months were observed for BMD (5.7, 7.8, and 9.8%) and TBS (1.4, 1.9, and 2.4%). Percentage changes in TBS were statistically significant compared with baseline (p < 0.001) and placebo (p ≤ 0.014). TBS was largely unrelated to BMD, regardless of treatment, either at baseline or for annual changes from baseline (all r 2 ≤ 0.06). Conclusions In postmenopausal women with osteoporosis, denosumab significantly improved TBS independently of BMD.