Negatively charged carbon dots (Cdots) were successfully impregnated into chitosan/alginate film formed on model colloidal particles as a result of the attractive interactions with the chitosan molecules. The electrical properties of the produced films were studied by electrokinetic spectroscopy. In this study, the electric light scattering method was applied for first the time for the investigation of suspensions of carbon-based structures. The electro-optical behavior for the suspension of polymer-coated particles showed that the electric polarizability of the particle-covered layer from alginate was significantly higher compared to that of the layer from chitosan due to the higher charge density of alginate. The presence of a low concentration of Cdots in the film results in partial charge screening. It was confirmed that the polarizability of counterions with lower mobility along the adsorbed polyion chains was responsible for the registered electro-optical effect from the suspension of polymer-coated particles and that the participation of diffuse H+ counterions of Cdots in the creation of the electro-optical effect was negligible. The observed oscillation behavior in the evolution of the film thickness was interpreted through the participation of compensatory effects due to the additional adsorption/desorption of polyelectrolyte complexes from the film surface. The concentration of Cdots in the film was determined, and the loaded amount was ca. 6.6 µg/mL per layer.