Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on orthodontic tooth movement (OTM) remains poorly understood. This study used an in vitro model with human PDLCs previously exposed to H2O2 to investigate the effects of OS under a static compressive force which simulated the conditions of OTM. Human PDLCs were treated with varying concentrations of H2O2 to identify sub-lethal doses that affected viability minimally. To mimic compromised conditions resembling OTM under OS, the cells were pretreated with the selected H2O2 concentrations for 24 h. Using an in vitro loading model, a static compressive force (2 g/cm2) was applied for an additional 24 h. The cell viability, proliferation, and cytotoxicity were evaluated using live/dead and resazurin assays. Apoptosis induction was assessed based on caspase-3/7 activity. The gene expression related to bone remodeling (RUNX2, TNFRSF11B/OPG, BGLAP), inflammation (IL6, CXCL8/IL8, PTGS2/COX2), apoptosis (CASP3, CASP8), and autophagy (MAP1LC3A/LC3, BECN1) was analyzed using RT-qPCR. This study suggests an altering effect of previous OS exposure on static-compression-related mechanosensing. Further research is needed to fully elucidate these mechanisms.