This research investigates the effect of corrosion solutions on the mechanical properties of asphalt concrete mixtures. A control asphalt mixture (CM) and five polymer-modified (PM) or filler-modified (FM) mixtures containing waste materials are prepared, namely PM high-density polyethylene plastic (PM-PL), PM crumb rubber (PM-CR), FM Para wood ash (FM-PA), FM palm empty fruit bunch ash (FM-EA), and FM rice husk ash (FM-RA). The experiment is conducted by immersing the mixture specimens in four types of water solutions (i.e., distilled water, alkaline solution, sulfate solution, and acid solution), followed by the splitting tests. Finally, the corrosion resistance factor (fc) is computed to assess the corrosive effect of the corrosion solutions. The results show that the degree of reduction in tensile strength mainly depends on the type of corrosion solutions, type of mixtures, and immersion time. FM-EA provides better resistance under the alkaline and acid solutions, while PM-PL exhibits the greatest fc under the sulfate solution. Among all the mixtures, PM-PL shows the greatest ability in withstanding the corrosion solutions.