Forests are under threat from pests, pathogens, and changing climate. One of the major forest pathogens worldwide is Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. D. septosporum is a hemibiotrophic fungus related to well-studied Dothideomycete pathogens, such as Cladosporium fulvum. These pathogens use small secreted proteins, termed effectors, to facilitate the infection of their hosts. The same effectors, however, can be recognised by plants carrying corresponding immune receptors, resulting in resistance responses. Hence, effectors are increasingly being exploited to identify and select disease resistance in crop species. In gymnosperms, however, such research is scarce. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered secreted proteins that trigger cell death in the angiosperm Nicotiana spp., suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we also developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to one of our DsCEs, as well as to a reference cell death-inducing protein. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.