A filamentous fungus (also called molds or moldy fungus) is a taxonomically diverse organism from phylum Zygomycota and Ascomycota with filamentous hyphae and has the ability to produce airborne spores or conidia. Currently, more than 70,000 molds are known, and some of them contain unique and unusual biochemical pathways. A number of products from such pathways, especially, the secondary metabolite (SM) pathways are used as important pharmaceuticals, including antibiotics, statins, and immunodepresants. Under different conditions, the individual species can produce more than 100 SM. The strain improvement programs lead to high yielding in target SM and significant reduction of spin-off products. The main tool for the strain improvement of filamentous fungi is random mutagenesis and screening. The majority of industrial overproducing SM strains were developed with the help of such technique over the past 50–70 years; the yield of the target SM increased by 100- to 1000-fold or more. Moreover, most of the strains have reached their technological limit of improvement. A new round of mutagenesis has not increased overproduction. Recently, it was shown that that the addition of exogenous polyamines may increase the production of such improved strains of filamentous fungi. The possible molecular mechanism of this phenomenon and its biotechnological applications are discussed.