BackgroundGrowth conditions that bring about stress on Phaffia rhodozyma cells encourage the synthesis of astaxanthin, an antioxidant carotenoid, which protects cells against oxidative damage. Using P. rhodozyma cultures performed with and without copper limitation, we examined the kinetics of astaxanthin synthesis along with the expression of asy, the key astaxanthin synthesis gene, as well as aox, which encodes an alternative oxidase protein.ResultsCopper deficiency had a detrimental effect on the rates of oxygen consumption and ethanol reassimilation at the diauxic shift. In contrast, copper deficiency prompted alcoholic fermentation under aerobic conditions and had a favorable effect on the astaxanthin content of cells, as well as on aox expression. Both cultures exhibited strong aox expression while consuming ethanol, but particularly when copper was absent.ConclusionWe show that the induction of either astaxanthin production, aox expression, or aerobic fermentation exemplifies the crucial role that redox imbalance plays in triggering any of these phenomena. Based on our own results and data from others, we propose a mechanism that rationalizes the central role played by changes of respiratory activity, which lead to redox imbalances, in triggering both the short-term antioxidant response as well as fermentation in yeasts and other cell types.