Corynebacterium glutamicum is a non-pathogenic species of the Corynebacteriaceae family. It has been broadly used in industrial biotechnology for the production of valuable products. Though it is widely accepted at the industrial level, knowledge about the genomic diversity of the strains is limited. Here, we investigated the comparative genomic features of the strains and pan-genomic characteristics. We also observed phylogenetic relationships among the strains based on average nucleotide identity (ANI). We found diversity between strains at the genomic and pan-genomic levels. Less than one-third of the C. glutamicum pan-genome consists of core genes and soft-core genes. Whereas, a large number of strain-specific genes covered about half of the total pan-genome. Besides, C. glutamicum pan-genome is open and expanding, which indicates the possible addition of new gene families to the pan-genome. We also investigated the distribution of biosynthetic gene clusters (BGCs) among the strains. We discovered slight variations of BGCs at the strain level. Several BGCs with the potential to express novel bioactive secondary metabolites have been identified. Therefore, by utilizing the characteristic advantages of C. glutamicum, different strains can be potential applicants for natural drug discovery.