Nearly 150 million cases of urinary tract infections (UTIs) are reported each year, of which uncomplicated cystitis triggers > 25% of outpatient prescriptions of oral antimicrobial treatment (OAT). OAT aids immune cells infiltrating the urothelium in eliminating uropathogens capable of invading the urothelium and surviving hyperosmotic urine. This self-evident adaptability of uropathogens and the short interval between the introduction of Penicillin and the first report of antimicrobial resistance (AMR) implicate AMR as an evolutionary conserved heritable trait of mutant strains selected by the Darwinian principle to survive environmental threats through exponential proliferation. Therefore, AMR can only be countered by antimicrobial stewardship (AMS) following the principle of the five Ds—drug, dose, duration, drug route, and de-escalation. While convenient to administer, the onset of the minimum inhibitory concentration (MIC) for OAT in urine leaves a window of opportunity for uropathogens to survive the first contact with an antimicrobial and arm their descendant colonies with AMR for surviving subsequent higher urine antimicrobial levels. Meanwhile, the initial dose of intravesical antimicrobial treatment (IAT) may be well above the MIC. Therefore, the widespread clinical use of OAT for cystitis warrants an analysis of the strengths, weaknesses, opportunity, and threats (SWOTs) and a root cause analysis of the AMR associated with OAT and IAT.