2015
DOI: 10.1089/aivt.2015.0020
|View full text |Cite
|
Sign up to set email alerts
|

Comparative In Vitro Cytotoxicity of 20 Potential Food Ingredients in Canine Liver, Kidney, Bone Marrow-Derived Mesenchymal Stem Cells, and Enterocyte-like Cells

Abstract: To begin development of a mechanistically relevant humane alternative platform for safety assessment of dog food ingredients, comparative in vitro cytotoxicity of 20 ingredients was assessed in four canine cell types relevant for toxicity assessments. Previously, we described the toxicity of 13 compounds (clove leaf oil, eugenol, guanosine monophosphate [GMP], GMP plus inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol, lemon grass oil, xylitol, and citric… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2016
2016
2017
2017

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 54 publications
0
5
0
Order By: Relevance
“…Briefly, canine hepatocytes, CPTC, BMSC and ELC in 96-well plates were treated with 0-2.12 mg/mL of HEX for the canine hepatocytes and CPTC, and 0-0.05 mg/mL of HEX for BMSC and ELC. In this study, the various concentration ranges were selected based on the cytotoxic responses of HEX and tetrahydroisohumulone (TRA) in canine hepatocytes (LC 50 , 0.12 and 0.29 mg/mL); for CPTC 0.03 and 0.01 mg/mL; for BMSC 0.04 and 0.03 and mg/mL; for ELC 0.02 and 0.01 mg/mL, and a metabolic inhibitory potency of Isoxanthohumol on human CYP450 enzymes (IC 50 values, 10 μM) that have been previously reported [14,38]. The plasma concentrations of other hop ingredients, dihydroisohumulone (0.21 to 0.76 mg/mL) in white rabbits with a single IV dose of 25 mg/kg were also considered for a selection of HEX dose level; for TRA 0.2 to 0.65 mg/mL; and for isohumulone 0.04 to 0.65 mg/mL [39].…”
Section: Canine Bone Marrow-derived Mesenchymal Cells and Enterocyte-like Cellsmentioning
confidence: 55%
See 3 more Smart Citations
“…Briefly, canine hepatocytes, CPTC, BMSC and ELC in 96-well plates were treated with 0-2.12 mg/mL of HEX for the canine hepatocytes and CPTC, and 0-0.05 mg/mL of HEX for BMSC and ELC. In this study, the various concentration ranges were selected based on the cytotoxic responses of HEX and tetrahydroisohumulone (TRA) in canine hepatocytes (LC 50 , 0.12 and 0.29 mg/mL); for CPTC 0.03 and 0.01 mg/mL; for BMSC 0.04 and 0.03 and mg/mL; for ELC 0.02 and 0.01 mg/mL, and a metabolic inhibitory potency of Isoxanthohumol on human CYP450 enzymes (IC 50 values, 10 μM) that have been previously reported [14,38]. The plasma concentrations of other hop ingredients, dihydroisohumulone (0.21 to 0.76 mg/mL) in white rabbits with a single IV dose of 25 mg/kg were also considered for a selection of HEX dose level; for TRA 0.2 to 0.65 mg/mL; and for isohumulone 0.04 to 0.65 mg/mL [39].…”
Section: Canine Bone Marrow-derived Mesenchymal Cells and Enterocyte-like Cellsmentioning
confidence: 55%
“…HEX at cytotoxic concentrations modulated the expression of different target genes involved in cell death and survival with various magnitudes of transcriptional levels, in hepatocytes and to a less extent CPTC (Table 2). These results suggest that the increase in ROS/RNS levels (Figure 1 and 3) may be the primary cause of HEX-mediated cytotoxicity in canine hepatocytes, but the secondary cause in CPTC because its concentration corresponding to the increase in ROS/RNS levels in CPTC is greater than its cytotoxic level (LC 50 , 0.03 mg/mL) [14]. Previous study reported that other hop components such as humulone and β-acids hop didn't induce cell survival-related molecules, BCL-2 and BCL-X but activated cell death-related CASP3 and CASP9 as well as cytochrome c release in a human leukemia HL-60 cell line [48].…”
Section: Hexahydroisohumulone-modulated Gene Expressionmentioning
confidence: 84%
See 2 more Smart Citations
“…The ability to generate complex cell cultures, including stem cell technologies, three-dimensional (3D) approaches and tissue engineering all contribute to better modelling of the digestive system in vitro. Monteiro-Riviere et al (12) used four canine cell types to study potential toxicity of ingredients commonly used in dog food, illustrating how an in vitro panel can be used for hazard assessment. 3D intestinal organoids (mini-guts) appear to faithfully replicate healthy gut physiology as well as helping us to understand host-parasite interactions (13) and diseases such as cystic fibrosis (14) .…”
Section: Replacementmentioning
confidence: 99%