Hydroxylated polychlorinated biphenyls (OH-PCBs) are a group of metabolites biotransformed from polychlorinated biphenyls by animals with higher toxicities than their parent compounds. The present work developed and validated an analytical method for determinating penta-, hexa-, and hepta-chlorine substituted OH-PCBs in animal-derived food based on ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) with isotope-dilution. The target analytes were extracted with a 50% n-hexane/dichloromethane (v/v), purified by sulfuric acid-silica gel, and separated by 5% hydrated silica gel, achieving a final concentration of 100 times before injection to LC–MS/MS. The limits of detection (LOD) and quantification (LOQ) for target OH-PCBs were within the ranges of 0.003–0.010 μg/kg and 0.009–0.030 μg/kg, respectively. Average recoveries ranged between 76.7% and 116.5%, with relative standard deviations of less than 18.4%. The proposed method is simple, time-saving, sensitive, and accurate, making it a powerful tool for risk monitoring of OH-PCBs in animal-derived food.