During its first two and a half months, the recently emerged 2019 novel coronavirus, SARS-CoV-2, has already infected over one-hundred thousand people worldwide and has taken more than four thousand lives. However, the swiftly spreading virus also caused an unprecedentedly rapid response from the research community facing the unknown health challenge of potentially enormous proportions. Unfortunately, the experimental research to understand the molecular mechanisms behind the viral infection and to design a vaccine or antivirals is costly and takes months to develop. To expedite the advancement of our knowledge, we leveraged data about the related coronaviruses that is readily available in public databases and integrated these data into a single computational pipeline. As a result, we provide comprehensive structural genomics and interactomics roadmaps of SARS-CoV-2 and use this information to infer the possible functional differences and similarities with the related SARS coronavirus. All data are made publicly available to the research community.Having infected over a hundred thousand people in more than a hundred countries across the globe, the new coronavirus, SARS-CoV-2, has a major health and economic impact worldwide. With a genome of the new virus sequenced, scientists learned that this virus is closely related to other coronaviruses, such as SARS-CoV and MERS-CoV. This discovery, however, leads to other questions. How different are the proteins of SARS-CoV-2, its main functional building blocks, from those of SARS-CoV? Does the new virus target the same proteins in human cells as the known coronaviruses? Most importantly, can the currently developed SARS or MERS antiviral drug candidates or other promising compounds be used to treat the new infection? This study lays out the first 3D roadmap of SARS-CoV-2 viral proteins and their functional complexes, enabling scientists to answer the above questions. The roadmap can be used to streamline the search for new antivirals and vaccines.