ITER and to the advanced tokamak operation (e.g. the operation of future HL-2M), such as the access of H-mode, energetic particle physics, edge-localized mode (ELM) mitigation/suppression and disruption mitigation. Since the 2016 Fusion Energy Conference, the HL-2A team has focused on the investigations on the following areas: (i) pedestal dynamics and L-H transition, (ii) techniques of ELM control, (iii) the turbulence and transport, (iv) energetic particle physics. The HL-2A results demonstrated that the increase of mean E × B shear flow plays a key role in triggering L-I and I-H transitions. While the change of E × B flow is mainly induced by the ion pressure gradient. Both mitigation and suppression of ELMs were realized by laser blow-off (LBO) seeded impurity (Al, F e, W). The 30% N e mixture supersonic molecular beam injection (SMBI) seeding also robustly induced ELM mitigation. The ELMs were mitigated by low-hybrid current drive (LHCD). The stabilization of m/n=1/1 ion fishbone activities by electron cyclotron resonance heating (ECRH) was found on the HL-2A. A new m/n=2/1 ion fishbone activity was observed recently, and the modelling indicated that passing fast ions dominantly contribute to the driving of 2/1 fishbone. The non-linear coupling between toroidal Alfven eigenmode (TAE) and tearing mode (TM) leads to the generation of a high frequency mode with the toroidal mode number n=0. The turbulence is modulated by tearing mode when the island width exceeds a threshold and the modulation is localized merely in the inner area of the islands. Meanwhile, turbulence radially spreading takes place across the island region.