In this work, we have investigated six different in situ optical contactless temperature probing methods for cryogenic Yb:YAG systems. All the methods are based on variation of fluorescence spectra with temperature, and they either look at the width of the emission line, the ratio of the emission intensity at different wavelengths and to the overall spectral change at selected wavelength intervals. We have shown that, for Yb:YAG crystal with homogeneous temperature distribution, one can perform real-time contactless optical temperature measurements with a ± 1 K accuracy in the 78–300 K range. We have further tested the methods in measuring the average temperature of Yb:YAG rods at up to 500 W absorbed pump power level. We have seen that, a real-time temperature measurement accuracy of ± 5 K is feasible in both lasing and non-lasing situations for estimating the average temperature of crystals under nonhomogeneous thermal load. The techniques are quite valuable in evaluating the bonding quality of Yb:YAG crystals in cryogenic systems. Moreover, the real-time temperature information provides feedback on parameters like cavity alignment status and extraction efficiency to the laser engineers while optimizing the system.