Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb ؊/؊ , and Ctsl ؊/؊ mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl Cathepsins B and L are ubiquitously expressed papain-like cysteine proteases belonging to the C1a papain family (clan CA), with 11 members in humans (1) and 18 members in mice (2). Most cysteine cathepsins like cathepsin L are endopeptidases, whereas cathepsin B shows both endopeptidase and carboxydipeptidase activity (3). Mainly localized in the endosomal/lysosomal compartment, cathepsins have traditionally been thought to play important roles in lysosomal protein turnover. Additional specific functions have been postulated that link cathepsins to different physiological and pathological processes.Studies using cathepsin L (Ctsl)-gene-deficient mice 1 revealed an important role of Ctsl in cardiac homeostasis (4 -6) and a contribution of Ctsl to MHC II-mediated antigen presentation (7, 8) and prohormone processing (9, 10). In a mouse model of pancreatic neuroendocrine cancer, Ctsl promoted tumor growth and invasiveness (11,12). In stark contrast, Ctsl was found to attenuate tumor progression in mouse models of skin cancer, highlighting the context-specific function of this protease (13,14).The most prominent phenotype of Ctsl-deficient mice is periodic hair loss together with epidermal hyperplasia, acanthosis, and hyperkeratosis (15). These alterations in skin morphology are assumed to be keratinocyte specific, as controlled re-expression of Ctsl under a keratin 14 promoter
Research