2021
DOI: 10.1177/0309524x211052015
|View full text |Cite
|
Sign up to set email alerts
|

Comparative models for multi-step ahead wind speed forecasting applied for expected wind turbine power output prediction

Abstract: This paper investigates six of the most widely used wind speed forecasting models for a combination of statistical and physical methods for the purpose of Wind Turbine Power Generation (WTPG) prediction in Cameroon. Statistical method based on both single static and dynamic neural networks architectures and two hybrid neural networks architectures in comparison to ARIMA model are employed for multi-step ahead wind speed forecasting in two Datasets in Bapouh, Cameroon. The physical method is used to estimate 1 … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 38 publications
0
0
0
Order By: Relevance