Understanding how engine design and operation affect blow-by aerosol characteristics is key to reducing the emission of particulate matter (PM) via the crankcase ventilation system. To this end, representative aerosol data from four different diesel engines are compared on the basis of brake mean effective pressure (BMEP) and engine speed. The data were obtained from comparable sampling positions, using the same sampling system and optical particle counter. The discussion is based on the narrow particle size range of 0.4–1.3 µm, chosen for its significance with regard to blow-by aerosol sources, as well as for the challenges it poses for separation systems. Key findings include particle size distributions (PSD) of virtually identical shape, indicating that these engines share the same aerosol sources and underlying generation mechanisms. However, absolute concentrations differed by a factor of about six, presumably due to differences in engine design, which in turn affect key parameters such as temperature, pressure and flow rates. At BMEPs ≤ 10 bar all engines exhibited similarly low aerosol concentrations. With increasing BMEP the concentration rose exponentially. The engine with the smallest rise and the lowest total concentration featured an aluminum alloy piston, the smallest displacement, the lowest peak BMEP as well as the lowest maximum oil temperature. At maximum torque the aerosol concentration scaled fairly linearly with engine displacement. Increasing the engine speed had a minor impact on aerosol concentrations but affected blow-by flows, hence leading to a rise of aerosol mass flows. Within the limits of this comparative measurement studies, three generation mechanisms are provided for blow-by aerosols.