This study aims to evaluate the prevalence of mycotoxins in industry-submitted cool-season barley and wheat grown under low heat unit climate conditions. Seventy-two barley samples and 83 wheat samples were submitted by producers and industry from May 2016 to May 2017. The concentrations of twelve common mycotoxins, including nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), ochratoxin A (OTA), zearalenone (ZEN), α-zearalenol (α-ZAL), β-zearalenol (β-ZAL), diacetoxyscirpenol (DAS), T-2 toxin (T-2), HT-2 toxin (HT-2), and aflatoxin B1 (AFB1), were determined using the liquid chromatography/tandem mass spectrometry method. Mycotoxins were detected in 40 barley (56%) and 35 wheat (42%) samples submitted by producers and industry. DON showed the highest incidence in barley (44%) and wheat (33%). None of the barley samples contained detectable DAS and no wheat samples tested positive for α-ZAL, DAS, T-2, or AFB1. Co-occurrence of DON and other mycotoxins was frequently observed. Among the mycotoxin-positive samples, 70% of barley samples and 54% of wheat samples were co-contaminated with at least two mycotoxins. Four barley (6%) and five wheat (6%) samples contained levels of DON above 1000 μg/kg (regulatory level in diets for lactating dairy animals) and HT-2 content in five barley (7%) and four wheat (5%) samples exceeded 100 μg/kg (regulatory level in diets for cattle and poultry). Overall, contamination of these mycotoxins was more frequent and more severe in barley in comparison with wheat that was submitted by producers and industry. Comprehensive strategies, including the prevention of Fusarium toxins contamination, the routine monitoring of their prevalence, the detoxification of them in feed and food, as well as the inhibition of their absorption in the gastrointestinal tract, are highly required. A rapid detection method needs to be developed to screen mycotoxins in industry-submitted cool-season cereal grains.