Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68 ± 22 lM and 17 ± 2 lM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2 mM concentration of ''metavanadate'' solution that contains ortho and metavanadate species, as observed by combining kinetic with 51 V NMR spectroscopy studies. Although at 25°C, decameric vanadate (10 lM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 lM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2 mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10 h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18 h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the ''decavanadate'' interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.