In an attempt to answer the question if there is dependence between the pore ordering of the mesoporous silica, obtained through the cooperative template mechanism, and the shape of the micellar aggregates of the surfactant solutions, the micellar structures of two nonionic fluorinated surfactant based-systems are studied by SANS. By fitting the experimental spectra with theoretical models, the structural evolution of the molecular aggregates can be described, and some important parameters can be obtained, such as the water and eventually oil penetration into the surfactant film, the aggregation number, the area per polar head of the surfactant, and the surfactant chain conformations. We have shown that for the C(8)F(17)C(2)H(4)(OC(2)H(4))(9)OH system, the micelles are prolate spheroids. The increase of the surfactant concentration in water does not change the characteristics of the interfacial film, but the aggregation number raises and the particles become more elongated. By contrast, the experimental curves of C(7)F(15)C(2)H(4)(OC(2)H(4))(8)OH cannot be fitted considering a small particle model. However, progressive incorporation of fluorocarbon induces a change of size and shape of the globules, which become smaller and more and more spherical. Regarding the material mesopore ordering, it appears that the micelles that lead to hexagonal mesoporous silica materials are described with a model of quasi-spherical globules. On the contrary, when large micelles are found, only wormhole-like structures are obtained.