Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose The enrichment of health-promoting compounds in plants and foods has received significant research attention over the past years, leading researchers to use cutting-edge technologies like elicitation in agriculture and food production systems. Engineered nanoparticles (NPs) have been shown to function as effective elicitors, enhancing the synthesis of secondary metabolites. Although carbon dots (CDs) are at the forefront due to their favorable characteristics, such as being green, biocompatible, and low toxicity, their functions as elicitors have not been thoroughly investigated. The aim of this study was, therefore, to investigate the potential effect of sugar beet molasses carbon dots (SBM-CDs), characterized by their endogenous food-borne nature as elicitors, on the agronomic and bioactive compounds of wheatgrass juice obtained from hydroponically cultivated wheatgrasses. Methods Wheatgrasses were grown with and without SBM-CDs extracted from molasses at 50–200 mg L− 1 concentrations through a nutrient solution in a hydroponic system. After 7 days, wheatgrass juice was obtained by squeezing wheatgrass. The effects of SBM-CDs were investigated by assessing the agronomic parameters and bioactive compounds of wheatgrass juice. Results The amount of β-carotene, vitamin E, vitamin C, and chlorophyll a increased by 150%, 84%, 25%, and 89%, respectively, with the application of 200 mg L− 1 SBM-CDs (p < 0.01) in comparison with the control group (the application without SBM-CDs). Besides, this application resulted in a 34% increase in the total quantity of tested phenolic compounds. Conclusions These data suggest that our biomass-derived renewable CDs may be a novel category of elicitors for enhancing the production of bioactive compounds in wheatgrass.
Purpose The enrichment of health-promoting compounds in plants and foods has received significant research attention over the past years, leading researchers to use cutting-edge technologies like elicitation in agriculture and food production systems. Engineered nanoparticles (NPs) have been shown to function as effective elicitors, enhancing the synthesis of secondary metabolites. Although carbon dots (CDs) are at the forefront due to their favorable characteristics, such as being green, biocompatible, and low toxicity, their functions as elicitors have not been thoroughly investigated. The aim of this study was, therefore, to investigate the potential effect of sugar beet molasses carbon dots (SBM-CDs), characterized by their endogenous food-borne nature as elicitors, on the agronomic and bioactive compounds of wheatgrass juice obtained from hydroponically cultivated wheatgrasses. Methods Wheatgrasses were grown with and without SBM-CDs extracted from molasses at 50–200 mg L− 1 concentrations through a nutrient solution in a hydroponic system. After 7 days, wheatgrass juice was obtained by squeezing wheatgrass. The effects of SBM-CDs were investigated by assessing the agronomic parameters and bioactive compounds of wheatgrass juice. Results The amount of β-carotene, vitamin E, vitamin C, and chlorophyll a increased by 150%, 84%, 25%, and 89%, respectively, with the application of 200 mg L− 1 SBM-CDs (p < 0.01) in comparison with the control group (the application without SBM-CDs). Besides, this application resulted in a 34% increase in the total quantity of tested phenolic compounds. Conclusions These data suggest that our biomass-derived renewable CDs may be a novel category of elicitors for enhancing the production of bioactive compounds in wheatgrass.
The increase in antimicrobial resistance (AMR) poses a massive threat to world health, necessitating the urgent development of alternative antimicrobial growth control techniques. Due to their specific physical and chemical properties, nanomaterials, particularly carbon-based nanomaterials, have emerged as attractive candidates for antimicrobial applications, however, reviews are lacking. This comprehensive review aims to bridge the existing knowledge gaps surrounding the mechanism and significance of nanobiochar (NBC) and carbon nanostructures in the field of antimicrobial applications. Notably, NBC, which is derived from biochar, exhibits promising potential as an environmentally-friendly substance with antimicrobial properties. Its strong adsorption capabilities enable the removal and immobilization of pathogens and pollutants from soil and water and also exhibit antimicrobial properties to combat harmful pathogens. In addition to NBC, carbon dots (CDs) and graphene oxide (GO) have also shown excellent antimicrobial properties. These carbon-based nanomaterials find applications in agriculture for phytopathogen control and post-harvest disease management, as well as in medicine for nanotheranostics and in the food industry for extending shelf life as an eco-friendly alternative to chemicals and antibiotics. However, the long-term toxicity of these nanoparticles to humans and the environment needs further investigation, considering the influence of different physiochemical characteristics on antimicrobial properties and nanotoxicity. Therefore, continued exploration in this area will pave the way for future research and safe deployment strategies of carbon-based nanomaterials in combating microbial threats. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.