The uncontrollable angles (UAs) in direct torque control (DTC) algorithm is an important issue through which the effects of voltage vectors (VEs) on the magnetic flux and the torque are accurately determined. In this paper, a unique analysis of UAs is performed at different operating conditions, including parameters variations in two different strategies: Direct torque and stator flux control (DTC_SC) and (DTC_RC). Values of Those angles were accurately determined for wide speed, stator and rotor variations, and load changes. In addition, a detailed numerical comparison was performed in terms of these angles in the two strategies mentioned above for each operating condition. The comprehensive comparison showed the superiority of the DTC_RC strategy over its DTC_SC counterpart, being the maximum values of UAs in DTC_RC were 8°, 33°, and 21° versus 15°, 45°, and 38° in DTC_RC strategy for the following operations: Variable speed with variable stator resistance, variable speed with variable stator and rotor resistances, variable speed with variable load, respectively. MATLAB/Simulink results of the contributed analysis and comparisons were accomplished and validated. In addition, DS1103‐based experimental tests supported and verified the theoretical analysis.