ABSTRACT:In OCR domain, it is now widely accepted that a single feature extraction method and single classification algorithm can't yields better performance rate. It is therefore, a compound feature extraction approach based on structural analysis for recognition of offline handwritten Marathi vowels is proposed. Though, Moment invariant technique is well experimented by many researchers, an attempt is made to enhance the existing results by extracting various supportive features like affine invariant moments, image thinning, structuring the image in box format, etc. These features are independent of size, slant, orientation, translation and other variations in handwritten characters. 5 samples of each vowel from 25 different people have been sampled and database was prepared. After segmentation, an individual image is resized to 50X50. 33 different features were evaluated for each character. The Fuzzy Gaussian Membership Function has been adopted for classification. The main objective of the paper is to test the possibility of using the MI, AMI combination of both for recognition of Handwritten Marathi vowels. The results show the satisfactory performance rate.