The nonenzymatic cofactor high molecular weight kininogen (HK) is a precursor of bradykinin (BK). The production of BK from HK by plasma kallikrein has been implicated in the pathogenesis of inflammation and vascular injury. However, the functional role of HK in the absence of prekallikrein (PK), the proenzyme of plasma kallikrein, on vascular endothelial cells is not fully defined. In addition, no clinical abnormality is seen in PKdeficient patients. Therefore, an investigation into the effect of HK, in the absence of PK, on human pulmonary artery endothe- The plasma kallikrein-kinin system (KKS) 2 consists of three proenzymes; factor XII (FXII, Hageman factor), prekallikrein (PK, Fletcher factor), and factor XI (FXI, plasma thromboplastin antecedent) as well as one cofactor; high molecular weight kininogen (HK, Fitzgerald factor). KKS is involved in the regulation of hemodynamics, inflammation, complement activation, angiogenesis, thrombosis, and fibrinolysis. Basically, all these proposed roles represent a range of overlapping effects that contribute to various extents toward vasodilation and healing. Therefore, the plasma KKS can be considered to have a spectrum of physiological effects, ranging at one extreme from a hemostatic state of vasodilation and promotion of smooth blood flow, all the way to a prothrombotic state. It is conceivable to suggest that other mechanisms proposed about respiratory, retinal, and renal systems can fit into this spectrum of physiological effects (1-3). There is accumulating evidence suggesting that when the plasma KKS is activated, the results are a sequential release of proteolytic enzymes and vasoactive peptides, generation of both angiogenic and anti-angiogenic molecules, stabilization of thrombus, and an increase in protease inhibitor activity in blood (4 -7). The activation of HK-PK complex on endothelial cells triggers vasodilation through smooth muscle relaxation, inhibits platelet aggregation, and induces proinflammatory responses. Of note, the direct assembly of HK, PK, and FXII on vascular smooth muscle cells (VSMC) also results in the activation of PK to kallikrein (8). The induction of these physiological reactions is caused by the release of the vasoactive peptide bradykinin (BK) from HK by kallikrein. Bradykinin B 2 receptor activation by BK mediates the activation of endothelial nitric-oxide synthase (eNOS) and phospholipase A 2 (PLA 2 ) leading to production of nitric oxide (NO) and prostacylin (PGI 2 ). Evidence suggests that BK phosphorylates p44/42 mitogen-activated protein kinase in VMSC, which is blocked by BK antagonist HOE-140 (8).Besides having a direct effect on blood vessels, the HK-PK complex has also been shown to mediate the effects of other pro-inflammatory molecules. Recent study suggests that the inhibitors of both BK and factor XII activity protect from mast cell-induced effects not only in patients but also in genetically engineered mouse models. The authors proposed that this class of inhibitors could be useful to treat allergic diseases (9)....