Abrasive jetting stream generated from accelerator tank is crucial to the precision machining of industrial products during the process of strengthen jet grinding. In this article, its effectiveness prediction using normalized sparse autoencoder-adaptive neural fuzzy inference system is carried out to provide an optimal result of jetting stream. A normalized sparse autoencoder-adaptive neural fuzzy inference system capable of calculating the concentration density of abrasive impact stress by normalized sparse autoencoder and identifying the effectiveness indexes of abrasive jetting by adaptive neural fuzzy inference system is proposed to predict the stream effectiveness index in grinding practices, indicating that when turbulence root-mean-square velocity ( VRMS) is 420 m/s, turbulence intensity ( Ti) is 570, turbulence kinetic energy ( Tc) is 540 kJ, turbulence entropy ( Te) is 620 J/K, and Reynolds shear stress ( Rs) is 430 kPa (Error tolerance = ± 5%, the same as follows), the optimized effectiveness quality of abrasive jetting stream could be ensured. The effectiveness prediction involve the following steps: measuring the jet impact data on the interior boundary surface of accelerator tank, calculating the concentration density of abrasive impact stress, establishing the descriptive analytical frame work of normalized sparse autoencoder-adaptive neural fuzzy inference system, adaptive prediction of abrasive jetting stream effectiveness through normalized sparse autoencoder-adaptive neural fuzzy inference system computation, and performance verification of actual effectiveness prediction in the efficiency quantification and quality assessment when it compared to that of alternative approaches, such as genetic, simulated annealing–genetic algorithm, Taguchi, artificial neural network–simulated annealing, and genetically optimized neural network system methods. Objective of this research is to adaptive predict the abrasive jetting stream effectiveness using a new-proposed prediction system, a stable and reliable abrasive jetting stream therefore can be achieved using jetting pressure ( Pw) at 320 MPa, mass of cast steel grits ( Mc) at 270 g, mass of bearing steel grits ( Mb) at 310 g, mass of brown-fused alumina grits ( Ma) at 360 g, and mass rate of abrasives ( Fa) at 0.46 kg/min. It is concluded that normalized sparse autoencoder-adaptive neural fuzzy inference system owns an outstanding predictive capability and possesses a much better working advancement in typical calibration indexes of accuracy and efficiency, meanwhile a high agreement between the fuzzy predicted and actual measured values of effectiveness indexes is ensured. This novel method could be promoted constructively to improve the quality uniformity for abrasive jetting stream and to facilitate the productive managements of abrasive jet machining consequently.