In the current study, electrolytic deposition using two different electrodes, copper (Cu) and nickel (Ni) was investigated with the aim of protecting the worn surface during mechanical sectioning and polishing, for a posterior examination of the sub-surface microstructure. The efficacies of the two coatings were visually assessed based on its adhesivity and the ability to protect the wear tracks of an as-cast 26% Cr high chromium cast iron (HCCI) alloy. It was observed that electrodeposition using Cu as the electrode was ineffective owing to a poor adhesivity of the coating on the HCCI surface. The coating had peeled off at several regions across the cross-section during the mechanical sectioning. On the other hand, Ni electroplating using Ni strike as the electrolyte was successfully able to protect the wear track, and the sub-surface characteristics of the wear track could be clearly visualized. A uniform coating thickness of about 8 µm was deposited after 30–40 min with the current density maintained between 1 and 5 A/dm2. The presence of the Ni coating also acted as a protective barrier preventing the ejection of the broken carbide fragments underneath the wear track.