Groundwater extraction is increasing rapidly in many areas of the world, causing serious impacts such as falling water tables, ground surface subsidence, water quality degradation, and reduction of stream baseflow on which many ecosystems depend. Methods for understanding and predicting the impacts of groundwater extraction generally lack detailed spatial and temporal knowledge of the subsurface hydrogeomechanical properties. This review provides a comprehensive understanding of Earth and atmospheric tides and their impact on subsurface pore pressure. First, we evaluate the global occurrence of Earth and atmospheric tides. Then, we illustrate their impact on the groundwater response and connect this with the theory of poroelasticity, which underpins quantitative analyses. Finally, we review methods that utilize these impacts to characterize groundwater systems and to quantify their hydrogeomechanical properties. We conclude by highlighting their potential as passive and low‐cost investigation techniques and by outlining the research and developments required to progress and make analyses readily available. Thus, hydrogeomechanical properties of subsurface systems could be obtained at unprecedented spatial and temporal resolution, adding additional value to commonly acquired groundwater and atmospheric pressure data.