In high-efficiency silicon solar cells featuring carrierselective passivating contacts based on ultrathin SiO x /poly-Si, the appropriate implementation of transparent conductive oxide (TCO) layers is of vital importance. Considerable deterioration in passivation quality occurs for thin poly-Si-based devices owing to the sputtering damage during TCO deposition. Curing treatment at temperatures above 350 °C can recover such degradation, whereas the opto-electrical properties of the TCO are affected as well, and the carrier transport at the poly-Si/TCO contact is widely reported to degrade severely in such a procedure. Here, we propose straightforward approaches, post-deposition annealing at 400 °C in nitrogen, hydrogen, or air ambience, are proposed to tailor material properties of high-mobility hydrogenated fluorine-doped indium oxide (IFO:H) film. Structural, morphological, and opto-electrical properties of the IFO:H films are investigated as well as their inherent electron scattering and doping mechanisms. Hydrogen annealing treatment proves to be the most promising strategy. The resulting layer exhibits both optimal opto-electrical properties (carrier density = 1.5 × 10 20 cm −3 , electron mobility = 108 cm 2 V −1 s −1 , and resistivity = 3.9 × 10 −4 Ω cm) and remarkably low contact resistivities (∼20 mΩ cm 2 for both n-and p-contacts) in poly-Si solar cells. Even though the presented cells are limited by the metallization step, the obtained IFO:H-base solar cell show an efficiency improvement from 20.1 to 20.6% after specific hydrogen treatment, demonstrating the potential of material manipulation and contact engineering strategy in high-efficiency photovoltaic devices endowed with TCOs.