Water body deterioration caused by natural and anthropogenic activities has been a source of concern for regulating agencies. Several problems such as eutrophication and blue baby syndrome are caused by the excessive presence of nutrients within the aquatic biota. This also presents danger to the benthic community. In this study, an integrated aerobic/anoxic attached growth bioreactor was evaluated for its performance in removing nutrients (ammonia and nitrate) from simulated synthetic low and medium strength domestic wastewater. The experiment was conducted in two stages. ) was low in both stages 1 and 2. In both stages 1 and 2, ammonia removal reached 98%. The HRT was found to exert slight influence in nutrient removal using the integrated bioreactor. At HRT of 7.2 and 12 days, effluent ammonia concentration of 1.1 and 0.6 mg LG 1 was obtained, whereas effluent nitrate was in the range of 0.55 and 0.22 mg LG 1 , respectively. Chemical Oxygen Demand (COD) was also monitored at steady states and was found below 20 mg LG 1 in both stages 1 and 2 at HRT of 12 days. This study, therefore demonstrates the capacity of an integrated bioreactor to mitigate the enormous challenge of water body deterioration and toxicity caused by indiscriminate discharge of polluted wastewater.