This study reports a new nonfullerene electron transporting material (ETM) based on naphthalene diimide (NDI) small molecules for use in high-performance perovskite solar cells (PSCs). These solar cells simultaneously achieve high power conversion efficiency (PCE) of over 20% and long-term stability. New NDI-ID (N,N′-Bis(1-indanyl)naphthalene-1,4,5,8-tetracarboxylic diimide) consisting of an N-substituted indane group having simultaneous alicyclic and aromatic characteristics is synthesized by a low-cost, one-step reaction, and facile purification method. The partially flexible characteristics of an alicyclic cyclopentene group on indane groups open the possibility of lowtemperature solution processing. The conformational rigidity and aromaticity of phenyl and alicyclic groups contribute to high temporal stability by strong secondary bonds. NDI-ID has herringbone packed semiconducting NDI cores that exhibit up to 0.2 cm 2 V −1 s −1 electron mobility in field effect transistors. The inverted PSCs based on CH(NH 2 ) 2 PbI 3-x Br x with NDI-ID ETM exhibit very high PCEs of up to 20.2%, which is better than that of widely used PCBM (phenyl-C61-butyric acid methyl ester) ETM-based PSCs. Moreover, NDI-IDbased PSCs exhibit very high long-term temporal stability, retaining 90% of the initial PCE after 500 h at 100 °C with 1 sun illumination without encapsulation. Therefore, NDI-ID is a promising ETM for highly efficient, stable PSCs.