2007
DOI: 10.1117/12.719686
|View full text |Cite
|
Sign up to set email alerts
|

Comparative study of state-of-the-art algorithms for hyperspectral image analysis

Abstract: This work studies the end-to-end performance of hyperspectral classification and unmixing systems. Specifically, it compares widely used current state of the art algorithms with those developed at the University of Puerto Rico. These include algorithms for image enhancement, band subset selection, feature extraction, supervised and unsupervised classification, and constrained and unconstrained abundance estimation. The end to end performance for different combinations of algorithms is evaluated. The classifica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?