Steel plate shear wall is one of the most effective dissipation systems which are commonly used in buildings. In order to improve the hysteretic behavior of shear panels, large perforation patterns may be applied, transforming the shear plate into a sort of grid systems, where plastic deformations are concentrated on specific internal link elements. This study investigates the behavior of grid systems loaded in shear where the internal links are created by cutting out internal parts, leaving rectangular tube–shaped link elements. The influence of internal link geometry on the cyclic performance of the systems is investigated experimentally. To this purpose, two specimens that varied in the width of links were fabricated and tested. The results indicate that any increase in the width of links leads to the growth of the ultimate strength, stiffness, and energy absorption capacity. Likewise, the stress distribution and fracture tendency of the tested specimens have been simulated by the finite element software (ABAQUS) and validated according to the experimental results. Based on finite element results, a suitable analytical formulation for the prediction of the shear strength at several shear deformation demands, considering the effect of thickness of the link, has been provided. Moreover, to improve the fracture tendency of the specimens, butterfly-shaped links, which varied in the middle length, were applied. The obtained results, which have been interpreted by considering the equivalent plastic strain value, prove that the shear panel behavior improves significantly when butterfly-shaped links are considered.