This research investigates the impact of additives such as activated carbon (AC) combined with metal oxides (Bi2O3, MoO3, and ZnO) on the thermal decomposition kinetics of ammonium nitrate (AN), magnesium (Mg), and nitrocellulose (NC) as a basic AN–Mg–NC composite. To study the thermal properties of the AN–Mg–NC composite with and without the AC–MexOy (Me = Bi, Mo, Zn) additive, a differential scanning calorimetry (DSC) analysis was conducted. The DSC results show that the AC–MexOy (Me = Bi, Mo, Zn) additive catalytically affects the basic AN–Mg–NC composite, lowering the peak decomposition temperature (Tmax) from 534.58 K (AN–Mg–NC) to 490.15 K (with the addition of AC), 490.76 K (with AC–Bi2O3), 492.17 K (with AC–MoO3), and 492.38 K (with AC–ZnO) at a heating rate of β equal to 5 K/min. Based on the DSC data, the activation energies (Ea) for the AN–Mg–NC, AN–Mg–NC–AC, and AN–Mg–NC–AC–MexOy (Me = Bi, Mo, Zn) composites were determined using the Kissinger method. The results suggest that incorporating AC and AC–MexOy (Me = Bi, Mo, Zn) additives reduce the decomposition temperatures and activation energies of the basic AN–Mg–NC composite. Specifically, Ea decreased from 99.02 kJ/mol (for AN–Mg–NC) to 93.63 kJ/mol (with addition of AC), 91.45 kJ/mol (with AC–Bi2O3), 91.65 kJ/mol (with AC–MoO3), and 91.76 kJ/mol (with AC–ZnO). These findings underscore the potential of using AC–MexOy (Me = Bi, Mo, Zn) as a catalytic additive to enhance the performance of AN–Mg–NC-based energetic materials, increasing their efficiency and reliability for use in solid propellants.