Two basins (Southern Bida and Northern Anambra Basins) were investigated to deduce weathering, paleooxygenation, provenance, depositional environment and tectonic setting, as well as to establish a relationship between the two basins. The obtained high values of calculated weathering indices such as Chemical index of alteration (CIA > 90), Chemical Index of Weathering (CIW > 90), Plagioclase Index of Alteration (PIA > 90) and the Al2O3-(CaO + Na2O)-K2O ternary relationship for the clay – shale sediments from both basins indicate intense weathering in the source area. Important geochemical ratios such as V/Cr, Cu/Zn, Ni/Co, (Cu+Mo)/Zn, revealed predominantly oxic conditions for the clay – shale sediments from both basins, although, a more reducing or an anoxic condition cannot be ruled out for the clay – shale sediments from the Southern Bida basin due to high ratios of U/Th (1.93-5.67) and Cu/Zn (0.19-5.00). In addition, the Sr/Ba ratios (0.16–3.50) for the clay-shales from the Southern Bida basin indicated an alternated marine and continental paleo-depositional settings and only continental setting (Sr/Ba ratios = 0.22 – 0.50) for the Northern Anambra basin. The Th/Sc, La/Sc, Th/Co and the LREE/HREE ratios showed a derivation of the shale and clay deposits from similar felsic-rich source rock while the log of (K2O/Na2O) vs SiO2, revealed a Passive Margin tectonic setting for the two Basins. There is insignificant differences between the geochemical classifications, weathering, source rock/provenance and tectonic settings of clay-shale sediments of both sedimentary basins, however, there exist slight disparity in their salinity conditions and redox settings.
Keywords: Geochemistry, Clay-shale, Provenance, Tectonic Setting, Northern Anambra and Southern Bida Basins