PurposeIn this study the comparison is presented for the variation in cross-sectional shape along the height of the building model. For this purpose Model B and Model C are having the considerable variation and Model A result can be easily predicted on the basis of the result of Model B and C while Model X is considered for the validation purposes only and it is well established that the results are within the allowable limit. This paper aims to discuss these wind generated effects in the tall building model.Design/methodology/approachComputational Fluid Dynamics (CFD) in ANSYS: CFX is used to investigate the wind effects on varying cross-sectional shape along the height of the building model.FindingsFrom pressure contours, it was observed that shape and size of the face is independent of the pressure distribution. It is also observed that pressure distribution for the windward face (A) was less than the magnitude of the leeward face for both models. The leeward face and lateral faces had similar pressure distribution. Also slight changes in pressure distribution were observed at the periphery of the models.Originality/valueThis study has been performed to analyse and compare the wind effect on tall buildings having varying cross sections with variation of different cross sections along the height. Most of the studies done in the field of tall buildings are concentrated to one particular cross-sectional shape while the present study investigates wind effects for combination of two types of cross sections along the height. This analysis is performed for wind incidence angles ranging from 0° to 90° at an interval of 30°. Analysis of wind flow characteristics of two models, Models B and C will be computed using CFD. These two models are the variation of Model A which is a combination of two types of cross section that is square and plus. Square and plus cross-sectional heights for Model B are 48 m and 144 m, respectively. Similarly, square and plus cross-sectional heights for Model C are 144 m and 48 m, respectively. The results are interpreted using pressure contours and streamlines, and comparative graphs of drag and lift forces are presented.