Chrysomycin A (CA), a promising antibiotic agent, usually coexists with two analog chrysomycins B (CB) and C (CC) produced by several wild-type (WT) Streptomyces strains. With the aim to increase CA production, UV mutagenesis-based breeding had been employed on a marine-derived strain Streptomyces sp. 891 in our previous study and afforded an improved strain 891-B6 with enhanced CA yield. By comparative transcriptome analysis, significant differences in chrysomycin BGC-related gene expression between the WT strain 891 and the mutant strain 891-B6 were unveiled in the current study. Among 25 up-regulated genes in mutant 891-B6, chryA, chryB, chryC, chryF, chryG, chryK, chryP, and chryQ, responsible for the biosynthesis of benzonaphthopyranone aglycone, and chryD, chryE, and chryU in charge of production of its deoxyglycoside, were characterized. Furthermore, the expression of genes chryOII, chryOIII, and chryOIV responsible for the formation of 8-vinyl in CA from 8-ethyl in CB were greatly enhanced in strain 891-B6. These findings provide molecular mechanisms for increased yield of CA and decreased yield of CB for mutant 891-B6, which has potential application in industrial CA production.