SummaryEuglenids comprise a group of single-celled eukaryotes with diverse modes of nutrition, including phagotrophy and photosynthesis. The level of morphological diversity present in this group provides an excellent system for demonstrating evolutionary transformations in morphological characters. This diversity also provides compelling evidence for major events in eukaryote evolution, such as the punctuated effects of secondary endosymbiosis and mutations in underlying developmental mechanisms. In this essay, we synthesize evidence for the origin, adaptive significance and diversification of the euglenid cytoskeleton, especially pellicle ultrastructure, pellicle surface patterns, pellicle strip number and the feeding apparatus. We also highlight holes in our knowledge that must be filled before we are able to confidently describe euglenid cell biology and infer the earliest stages in euglenid evolution. Nonetheless, by possessing combinations of characters resulting from adaptive change and morphostasis, euglenids have retained key pieces of evidence necessary for reconstructing the early evolution and diversification of eukaryotic life.