2003
DOI: 10.2135/cropsci2003.0718
|View full text |Cite
|
Sign up to set email alerts
|

Comparing a Preliminary Racial Classification with a Numerical Classification of the Maize Landraces of Uruguay

Abstract: Plant genetic diversity is a major component of any agricultural ecosystem. Thus, it is essential to classify genetic resources properly to conserve, evaluate, and enhance germplasm efficiently. In maize (Zea mays L.), many classification systems have been used for delineating maize races. From the 1980s, with the use of computers, numerical taxonomy became increasingly important and multivariate methods began to be used for classifying genetic resources. The objective of this study was to compare two methods … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
19
0
4

Year Published

2005
2005
2017
2017

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 23 publications
(23 citation statements)
references
References 13 publications
0
19
0
4
Order By: Relevance
“…The MLM procedure, combined with analysis of variance (ANOVA), has been proven to be effective in differentiating maize genotypes (Gutiérrez et al, 2003;Franco et al, 2005;Ortiz et al, 2008), fodder radish (Padilla et al, 2005), tomato (Gonçalves et al, 2009), common bean (Barbé et al, 2010;Cabral et al, 2010), pepper (Sudré et al, 2010), and banana (Pestana et al, 2011). However, high environmental influence on quantitative traits, mostly employed in the selection of genotypes in soybean-breeding programs, makes the results less accurate compared with other techniques.…”
Section: Introductionmentioning
confidence: 99%
“…The MLM procedure, combined with analysis of variance (ANOVA), has been proven to be effective in differentiating maize genotypes (Gutiérrez et al, 2003;Franco et al, 2005;Ortiz et al, 2008), fodder radish (Padilla et al, 2005), tomato (Gonçalves et al, 2009), common bean (Barbé et al, 2010;Cabral et al, 2010), pepper (Sudré et al, 2010), and banana (Pestana et al, 2011). However, high environmental influence on quantitative traits, mostly employed in the selection of genotypes in soybean-breeding programs, makes the results less accurate compared with other techniques.…”
Section: Introductionmentioning
confidence: 99%
“…In the second stage, the vector average of the quantitative variable is estimated by MLM procedure, for each subpopulation, regardless of the qualitative variable values. This procedure have been used for different purposes and with various crops such as maize (Gutiérrez et al, 2003;Franco et al, 2005;Ortiz et al, 2008), oilseed radish (Padilha et al, 2005), tomato (Gonçalves et al, 2009), snap bean (Barbé et al, 2010) and pepper (Sudré et al, 2010).…”
Section: Introductionmentioning
confidence: 99%
“…Además, María (2008) realiza una evaluación de las unidades de producción de maíz y concluye que se deben de tomar en cuenta las características socioeconómicas, el clima y el suelo para este tipo de estudios. Gutiérrez et al (2003) utilizan una clasificación numérica para delimitar la adaptación de diferentes híbridos y variedades de maíz, la cual produce grupos con características claras en términos de variables numéricas; encontraron una probabilidad de 0.966 en su clasificación. Camas et al (2010) aplicaron la metodología del sistema automatizado de evaluación de tierras de la FAO, donde generaron un modelo para planificar el establecimiento de maíz de temporal y concluyen que el sistema automatizado de zonificación agroecológica permite delimitar el establecimiento del maíz.…”
Section: Potential Areas For Maizeunclassified