Anais Do Congresso Brasileiro De Automática 2020 2020
DOI: 10.48011/asba.v2i1.1547
|View full text |Cite
|
Sign up to set email alerts
|

Comparing Action Aggregation Strategies in Deep Reinforcement Learning with Continuous Action

Abstract: Deep Reinforcement Learning has been very promising in learning continuous control policies. For complex tasks, Reinforcement Learning with minimal human intervention is still a challenge. This article proposes a study to improve performance and to stabilize the learning curve using the ensemble learning methods. Learning a combined parameterized action function using multiple agents in a single environment, while searching for a better way to learn, regardless of the quality of the parametrization. The action… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 11 publications
0
0
0
Order By: Relevance