Abstract:Lexicase selection and novelty search, two parent selection methods used in evolutionary computation, emphasize exploring widely in the search space more than traditional methods such as tournament selection. However, lexicase selection is not explicitly driven to select for novelty in the population, and novelty search suffers from lack of direction toward a goal, especially in unconstrained, highly-dimensional spaces. We combine the strengths of lexicase selection and novelty search by creating a novelty sco… Show more
“…Using PushGP, lexicase selection variants have been in recent work often compared to other selection methods (e.g., tournament selection) and achieved best success rates on many program synthesis benchmark problems [16], [29], [46], [47], [48], [49], [50], [51], [52], [53], [45].…”
The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify in this work the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming. Further, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several subproblems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution (e.g., correctly solved sub-problems).
“…Using PushGP, lexicase selection variants have been in recent work often compared to other selection methods (e.g., tournament selection) and achieved best success rates on many program synthesis benchmark problems [16], [29], [46], [47], [48], [49], [50], [51], [52], [53], [45].…”
The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify in this work the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming. Further, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several subproblems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution (e.g., correctly solved sub-problems).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.