Portability and efficiency are usually antagonists in multicore computing. In order to develop efficient code, one needs to take into account the topology of the target multi-cores (e.g., for locality). This clearly hampers code portability. In this paper, we show that you can have the cake and eat it too.We introduce MCTOP, an abstraction of multi-core topologies augmented with important low-level hardware information, such as memory bandwidths and communication latencies. We show how to automatically generate MCTOP using libmctop, our library that leverages the determinism of cache-coherence protocols to infer the topology of multi-cores using only latency measurements.MCTOP enables developers to accurately and portably define high-level performance optimization policies. We illustrate several such policies through four examples: (i-ii) thread placement in OpenMP and in a MapReduce library, (iii) a topology-aware mergesort algorithm, as well as (iv) automatic backoff schemes for locks. We illustrate the portability of these optimizations on five processors from Intel, AMD, and Oracle, with low effort.