Background
Family health history has been recognized as an essential factor for cancer risk assessment and is an integral part of many cancer screening guidelines, including genetic testing for personalized clinical management strategies. However, manually identifying eligible candidates for genetic testing is labor intensive.
Objective
The aim of this study was to develop a natural language processing (NLP) pipeline and assess its contribution to identifying patients who meet genetic testing criteria for hereditary cancers based on family health history data in the electronic health record (EHR). We compared an algorithm that uses structured data alone with structured data augmented using NLP.
Methods
Algorithms were developed based on the National Comprehensive Cancer Network (NCCN) guidelines for genetic testing for hereditary breast or ovarian and colorectal cancers. The NLP-augmented algorithm uses both structured family health history data and the associated unstructured free-text comments. The algorithms were compared with a reference standard of 100 patients with a family health history in the EHR.
Results
Regarding identifying the reference standard patients meeting the NCCN criteria, the NLP-augmented algorithm compared with the structured data algorithm yielded a significantly higher recall of 0.95 (95% CI 0.9-0.99) versus 0.29 (95% CI 0.19-0.40) and a precision of 0.99 (95% CI 0.96-1.00) versus 0.81 (95% CI 0.65-0.95). On the whole data set, the NLP-augmented algorithm extracted 33.6% more entities, resulting in 53.8% more patients meeting the NCCN criteria.
Conclusions
Compared with the structured data algorithm, the NLP-augmented algorithm based on both structured and unstructured family health history data in the EHR increased the number of patients identified as meeting the NCCN criteria for genetic testing for hereditary breast or ovarian and colorectal cancers.