Comparing neural models using their perceptual discriminability predictions
Jing Yang Zhou,
Chanwoo Chun,
Ajay Subramanian
et al.
Abstract:Internal representations are not uniquely identifiable from perceptual measurements: different representations can generate identical perceptual predictions, and similar representations may predict dissimilar percepts. Here, we generalize a previous method (“Eigendistortions” – Berardino et al., 2017) to enable comparison of models based on their metric tensors, which can be verified perceptually. Metric tensors characterize sensitivity to stimulus perturbations, reflecting both the geometric and stochastic pr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.