Abstract. This paper investigates diagonally implicit Runge-Kutta methods in which the implicit relations can be solved in parallel and are singly diagonalimplicit on each processor. The algorithms are based on diagonally implicit iteration of fully implicit Runge-Kutta methods of high order. The iteration scheme is chosen in such a way that the resulting algorithm is ^(a)-stable or Z,(a)-stable with a equal or very close to n/2. In this way, highly stable, singly diagonal-implicit Runge-Kutta methods of orders up to 10 can be constructed. Because of the iterative nature of the methods, embedded formulas of lower orders are automatically available, allowing a strategy for step and order variation.