2014 Makassar International Conference on Electrical Engineering and Informatics (MICEEI) 2014
DOI: 10.1109/miceei.2014.7067332
|View full text |Cite
|
Sign up to set email alerts
|

Comparing performance of Backpropagation and RBF neural network models for predicting daily network traffic

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2015
2015
2022
2022

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 13 publications
(6 citation statements)
references
References 12 publications
0
4
0
2
Order By: Relevance
“…Where, the hidden layer as a place to update and adjust the weight. Thus, the new weight values are obtained then directed towards the desired output target [14] [15]. The BPNN architecture and flowchart can be seen in Figure 1 and…”
Section: Methodsmentioning
confidence: 99%
“…Where, the hidden layer as a place to update and adjust the weight. Thus, the new weight values are obtained then directed towards the desired output target [14] [15]. The BPNN architecture and flowchart can be seen in Figure 1 and…”
Section: Methodsmentioning
confidence: 99%
“…Metode JST merupakan metode yang sangat baik untuk mendapatkan hasil peramalan yang lebih baik (Aini et al, 2019;Haviluddin & Dengen, 2016;Ma et al, 2016;Majhi et al, 2014;Purnawansyah & Haviluddin, 2014;Sakinah et al, 2018;Simanungkalit et al, 2020;Syafiq et al, 2020). Model akurasi peramalan terbaik yang digunakan dalam JST adalah MSE Simanungkalit et al, 2020).…”
Section: Pendahuluanunclassified
“…Reference [11] presents techniques based on the development of BP neural network and radial basis function (RBF) neural network models, for modeling and predicting the daily network traffic at Universities East Kalimantan, Indonesia. The predicting daily network traffic usage is a very important issue in the service activities of the university.…”
Section: Related Workmentioning
confidence: 99%