Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts
Maria Escobedo,
Cynthia Tapia,
Juan Gutierrez
et al.
Abstract:Crime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and AdaBoost. Through GridsearchCV we optimized hyperparameters to enhance our research findings. The results showed that Extra Tree Regression stood out as the model with an R2 value of 0.79. Additionally, error metrics… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.